Subject: Chemical Engineering

01. The friction factor for smooth pipes with turbulent flow ($N_{Re} = 1 \times 10^6$) is nearly equal to

A. 0 B. 0.01 C. 0.1 D. 1

02. Froude number can be expressed as

	Surface forces	Inertia forces
A.	Gravity forces	B. ——— Viscous forces
C.	Inertia forces	Viscous forces
	Gravity forces	Surface forces

03. For a fluid flowing in x-direction between two parallel stationary plates at different temperatures under steady-state, the correct starting equation to be used for finding out the temperature profile in the situation is

A.
$$v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} = \alpha \left(\frac{\partial^2 T}{\partial x^2}\right)$$

B. $\frac{\partial T}{\partial \theta} + v_x \frac{\partial T}{\partial x} = \alpha \left(\frac{\partial^2 T}{\partial x^2}\right)$
C. $v_x \frac{\partial T}{\partial x} = \alpha \left(\frac{\partial^2 T}{\partial x^2}\right)$
D. $v_x \frac{\partial T}{\partial x} = \alpha \left(\frac{\partial^2 T}{\partial y^2}\right)$

04. Momentum diffusivity is

A. kinematic viscosity C. mass diffusivity/density B. dynamic viscosity D. none of above

05. The hydraulic radius of a piece of rectangular cross-section of size 'a \times b' is

$(ab)^2$	a+b P	ab	$(ab)^2$
A. ${a+b}$	B. <u>ab</u>	$\frac{1}{2(a+b)}$	$\frac{D}{2(a+b)}$
06. In forced vortex, th	e velocity		
A. increases with C. decreases with	n increasing radius h decreasing radius	B. increases with de D. remains constan	ecreasing radius t with respect to radius
07. NB of a pipe stands	for		
A. Nominal outer C. Normal bore	diameter B. No D. No	ominal bore ormal bit size	
08. If the cake compress of filtration	sibility coefficient ind	creases for different solids a	at same pressure, the rate
A. increases	B. decreases	C. remains constant	D. varies randomly
09. Grinding efficiency	of a ball mill is of the	e order of	
A. 1 – 5% C. 75 – 809	%	B. 40 – 50% D. 90 – 95%	, 5
10. A particle attains its	s terminal settling velo	ocity when	
 A. gravity force + drag force = buoyancy force B. gravity force = buoyancy force C. buoyancy force + drag force = gravity force D. drag force = buoyancy force 			
11. The angle of nip de	creases when coefficie	ent of friction of the materia	ll to be crushed,
A. increases	B. decreases	C. remains constant	D. varies randomly
 12. You have been given with the following equipment for crushing of solid mass: (i) Fine crusher (ii) Ultrafine grinder (iii) Coarse crusher (iv) Intermediate crusher. Select suitable equipment for crushing of solid to obtain particles of 0.5 mm and 1 μm sizes, respectively. 			
A. (ii), (iv)	B. (iii), (i)	C. (iv), (ii)	D. (iii), (ii)
13. For a H ₂ SO ₄ solution of specific gravity 1.5, the concentration in terms of 0 Be is			
A. 68.42	B. 24.18	C. 48.33	D. 54.82
14. (GCV – NCV) india	cates the		

A. volatile matter C. heat available	in fuel for heating	B. ash content in fu D. moisture content	el t in fuel		
15. Catalyst is used for a operation is avoided	15. Catalyst is used for manufacturing methanol from CO and H ₂ , and the catalyst fouling during operation is avoided by				
A. feeding exc C. maintaining	ess H ₂ glow pressure	B. maintainin D. feeding Ng	g low temperature 2 along with the reactants		
16. For which type of th usually adopted?	e following polymer	ization reactions, solution	polymerization method is		
A. high pressu C. highly exot	re hermic	B. highly endo D. slow rate	thermic		
17. Which of the follow	ing is used as a raw n	naterial for production of p	entaerythritol?		
A. Ethanol	B. Benzene	C. Formaldehyde	D. Acetone		
18. Which one of the fo	llowing is used in vul	canization of rubber?			
A. Acetone	B. Styrene	C. Butanol	D. Aniline		
19. Deodourization of o	il is done under vacu	um as			
A. boiling point of odour causing components is highB. to prevent degradation of heat sensitive oilC. the odour casing components are heat sensitiveD. to remove hexane readily					
20. In the spinnerette operation involved in production of rayon fibre, the major problem is					
A. treating acid C. foric balanc	lic pulp ing	B. handling ba D. clogging	asic pulp		
21. With increase in temperature for most of the liquids, the thermal conductivity					
A. decreases	B. increases	C. remains constant	D. cannot be predicted		
22. Ratio of heat transfe a temperature gradie	r rate to the rate at wl ent, is known as	hich heat would be conduct	ed within the fluid under		
A. Reynolds C. Prandtl nu	number mber	B. Nusselt nu D. Grashoff	ımber number		

23. Identify the heat exchanger out of the following for which the correction factor, F_T is required to be calculated:

A. Cross-flow heat C. Parallel flow he	exchanger at exchanger	B. Counter-flo D. Mixed flow	w heat exchanger heat exchanger
24. The range of wave leng transfer is approximatel	th in the electromag y from	netic wave spectrum	important for radiative heat
A. 10 $^{-7}$ to 10 $^{-4}$	B. 10 $^{-9}$ to 10 $^{-5}$	C. 10^5 to 10^8	D. 10 $^{-1}$ to 10 ²
25. In a simple evaporator evaporated will be	, if one can get the	thick liquor's weigh	nt as 50%, then the solvent
A. 50%	B. between 50 to 10	00% C. < 50%	D. 83.33%
26. Which type of multiple-	effect evaporator is p	preferable when visco	ous liquors are used as feed?
A. feed-forward C. Feed-backward		B. Mixed-fee D. Parallel -f	ed Seed
27. If a body transmits all ra	adiations incident on	it, then it is known a	S
A. black body C. white body		B. transparen D. grey body	nt body
28. Which of the followin temperature difference?	g effects states that	a concentration diff	erence can be created by a
A. Dufour effect	B. Higbie effect	C. Soret effect	D. Chapman effect
29. Match the approximate	mass diffusivity ran	ges for the following	:
(1) Gas (2) Liquid	(i) 10 ⁻³ (ii) 10 ⁻ (iii) 0.1	5 to 10^{-6} cm ² /s. ⁸ to 10^{-10} cm ² /s. to 1 cm ² /s.	
A. $(1) - (iii), (2) - (i)$ C. $(1) - (i), (2) - (i)$	(i) i)	B. (1) – (iii), (D. (1) – (ii), (2) – (ii) 2) – (iii)
30. Minimum liquid rate to be used in a counter-current absorption tower corresponds to an operating line			
A. having a slope of C. tangential to the	of unity e equilibrium curve	B. having D. having	g a slope of 0.1 g a slope of – 1

31. The overall mass transfer co-efficient for absorption of SO_2 from air using dilute sodium hydroxide solution can be substantially increased by

A. increasing the gas film co-efficient

- B. increasing the liquid film co-efficient
- C. increasing the total pressure
- D. decreasing the total pressure
- 32. For high Schmidt number the boundary layer theory predicts that the mass transfer coefficient varies as proportional to
 - A. D_v B. $D_v^{1/3}$ C. $D_v^{2/3}$ D. $D_v^{3/2}$
- 33. The mass transfer flux in gases is generally higher than that in liquids in the order of

A.	10 times more	B. 100 times more
C.	1000 times more	D. 10 ⁵ times more

34. For solvent economy in liquid-liquid extraction, the distribution coefficient must be

A. less than one	B. equal to one
C. greater than one	D. as large as possible

35. In a batch drying operation one can get the rate of drying in constant dying period as 2.8 kg H_2O/hr . m² at an air inlet temperature of 60^oC with a wet-bulb temperature of 35^oC. If same air is used at an inlet temperature of 80^oC and wet-bulb temperature of 38^oC, the rate of drying will be

A. 2.8 kg. H ₂ O/hr. m ²	B. 3.85 kg. H ₂ O/hr. m ²
C. 4.704 kg. $H_2O/hr. m^2$	D. 6.146 kg. H ₂ O/hr. m ²

36. Because of tortuous micropores within the membranes, the diffusivity of the gas in the membrane

A. gets appreciably increased	B. gets appreciably reduced
C. remains unchanged	D. either (A) or (B)

- 37. A carbonaceous porous catalyst is used for conversion of nitrogen oxide in effluent air to carbon monoxide and nitrogen. The catalyst pellet is of radius 4.8×10^{-3} m, while the effective diffusivity of NO in air in the pores is found to be 4.6×10^{-8} m²/s and the external mass transfer coefficient to be 5×10^{-5} m/s. The 'Biot number' for mass transfer will be
 - A. 0.869 B. 1.739 C. 2.017 D. 3.802
- 38. The activation energy of a bimolecular gas decomposition reaction is 25,000 cal/mol. The fraction of molecules that have sufficient energy to decompose at 30° C will be

A.
$$7.29 \times 10^{-19}$$
 B. 8.07×10^{-19} C. 8.98×10^{-19} D. 9.27×10^{-19}

39. Overall order of reaction for which rate constant has units of $[(mol/lit)^{-3/2}, s^{-1}]$ is

A. – 3/2	B . 1/2
C. 3/2	D. 5/2

40. For a laminar flow reactor, the expression for C [= dF/dt] considering RTD equation can be written as

A.
$$C = \frac{e^{-t/\tau}}{\tau}$$
 B. $C = 1 - e^{-t/\tau}$ C. $C = \frac{\tau^2}{2t^3}$ D. $C = \frac{\tau}{2t^2}$

where 'F' represents ratio of volume and volumetric rate.

- 41. If a negligible temperature difference is observed in between the catalyst pellet centre and the pellet surface, then
 - A. pore diffusion does not control
 - B. pore diffusion controls
 - C. surface film mass transfer resistance does not control
 - D. reaction step resistance does not control
- 42. The assumptions made for the Clausius-Clapeyron equation are
 - (i) the vapour acts as ideal gas
 - (ii) applicable near the critical point
 - (iii) enthalpy of vapourization varies with temperature
 - (iv) the vapours are real gases
 - (v) applicable below and away from the critical point
 - (vi) enthalpy of vapourization is independent of temperature

A. (i), (ii), (iii) B. (i), (v), (vi) C. (iv), (v), (vi) D. (ii), (iv), (vi)

- 43. The degree of freedom of an azeotropic mixture of ethanol and water in a VLE system is
 - A. 0 B. 1 C. 2 D. 3
- 44. For azeotropic formation

A. $\gamma_1/\gamma_2 = 1$ B. $\gamma_1/\gamma_2 = 0$ C. $\gamma_1/\gamma_2 = P_1^0/P_2^0$ D. $\gamma_1/\gamma_2 = P_2^0/P_1^0$

where γ_i represents activity coefficient of component 'i', and P_i^0 represents vapour pressure of component 'i'.

- 45. For a cylindrical pin fin for long fins, the fin efficiency is proportional to
 - A. L B. $1/\sqrt{L}$ C. L^2 D. \sqrt{L}

where L is the length of fin.

- 46. The overall plate efficiency of a plate column is the ratio of
 - A. number of theoretical plates to the number of actual plates required
 - B. number of actual plates required to the number of theoretical plates

C. number of actual plates required to the number of overall gas-phase transfer units

D. number of theoretical plates to the number of overall liquid-phase transfer units

47. For steam pipelines with thermal stresses induced in them, the best pipe support is

A. Foundation support	B. Spring hanger support
C. Hanger support	D. Roller support

48. If a pump costs Rs. 2000 in 2010, what will be cost of the pump of same capacity in 2016? (Given: In 2010, cost index is 250 and in 2016, cost index is 300)

A.	Rs. 2400	B. Rs. 2750	C. Rs. 3000	D. Rs. 3500

49. If a plant producing 4 kton/annum fertilizer costing Rs. 20/kg. is analyzed for a new proposed plant of double the capacity, find the capital investment for proposed plant. (Assume turn-over ratio as 1)

A. Rs. 16,000.00 B. Rs. 40,000.00 C. Rs. 1.6×10^4 D. Rs. 1.6×10^8

50. The discount factor is written as the ratio of

A. Present worth and Future worth	B. Future worth and Present worth
C. Present worth and Premium	D. Premium and Present worth

51. A fully depreciable plant of Rs. 8000,000 has a estimated service life of 20 years. If 40% of the initial plant value is to be depreciated in first 4 years, the annual depreciation in Rs. /year using straight line method will be

$D_1 I_0 D_1 I_0 D_1 I_0 D_1 D_1 D_1 D_1 D_1 D_1 D_1 D_1 D_1 D_1$	A. Rs. 400,000	B. Rs. 800,000	C. Rs. 2000,000	D. Rs. 160000,000
---	----------------	----------------	-----------------	-------------------

52. LD₅₀ stands for

A. Lethal dose of a toxic chemical in which 50% of test animals survive and remaining die

B. Length to diameter ratio for a pipeline carrying a fluid at a pressure of 50 MPa

C. Legal dose of a toxic chemical in which 50 test animals die

D. Length to diameter ratio for a reactor operating at 50 MPa.

53. If BOD/COD = 1, which of the following methods you will recommend for waste treatment?

A. Chemical B. Biological C. Physical D. Thermal

54. Laplace transform of the function (t^2e^{2t}) using the first shift theorem is

e ²⁵	2		2
A. —	B. ———	C. $5^3 e^{35}$	D. ———
5^{3}	$(5-2)^2$		$(5-2)^3$

55. A proportional controller takes in error signal in temperature range 80 to 200^oC and produces electrical output in standard range of 4 to 20 mA. What will be the gain of the controller?

A. 0.1333 B. 0.2382 C. 0.332 D. 0.3

- 56. The rangeability of a control valve is written as
 - A. maximum controllable flow minimum controllable flow
 - B. maximum controllable flow \times minimum controllable flow
 - C. maximum controllable flow + minimum controllable flow
 - D. maximum controllable flow \div minimum controllable flow
- 57. A process shows the amplitude ratio of 0.2 at a cross-over frequency of 15 rad/s, the ultimate gain and period of sustained oscillation will be

A. 0.2, 5 B. 2, 0.2488 C. 5, 0.4188 D. 15, 0.2

- 58. The resistance of thermistors
 - A. remains constant at any temperature
 - B. increases with increasing temperature
 - C. decreases with increasing temperature
 - D. decreases with decreasing temperature
- 59. For valve sizing we generally consider the valve half open at the design or normal steadystate conditions. For designing such a valve if the design pressure drop over the valve is 1.4 atm. for water flowing at 0.02 m³/s and half open area of valve is 0.015 m², the valve coefficient, C_V will be

A. 0.0746 B. 0.1786 C. 0.1937 D. 0.2014

(Assume density of water at the operating condition as 1000 kg/m^3)

60. The time difference by which the output of a PD controller leads the input when the input changes linearly with time, is called

A. error ratio	B. derivative time
C. proportional sensitivity	D. gain